

KALISINDH THERMAL POWER PROJECT, RRVUNL, JHALAWAR

2X600 MW=1200 MW

Presented By:-

Mr. K. L. Meena, Chief Engineer Mr. G.R.Meena, Superintending Engineer Ms. Reeta, Addl. Executive Engineer

Height of NDCT:- 202 m. Completion Period:- 767 days Completion Date:- 12.04.2012

History of Power Development in Rajasthan

Rajasthan \rightarrow 1949; 19 princely states merged.

≻ Total number of towns and villages electrified \rightarrow Max 42.

► Installed generating capacity \rightarrow 13.27 MW.

Rajasthan State Electricity Board (RSEB) formed \rightarrow 1st July 1957 and development of power sector started.

≻Under new Power Reforms Undertaken by State Government, RSEB was unbundled into five Power Companies in **July 2000**.

≻Rajasthan Rajya Vidyut Utpadan Nigam Limited (RRVUNL) is one of them.

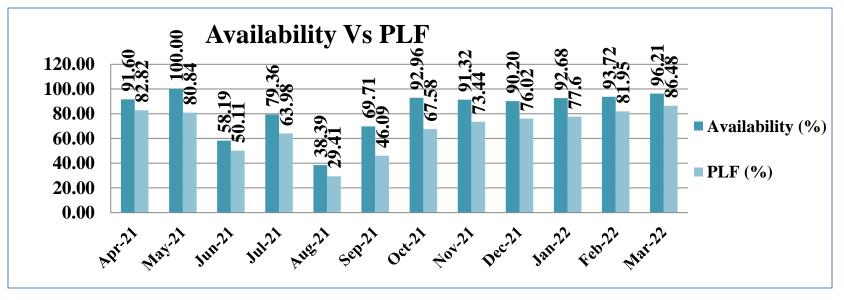
Introduction of RRVUNL

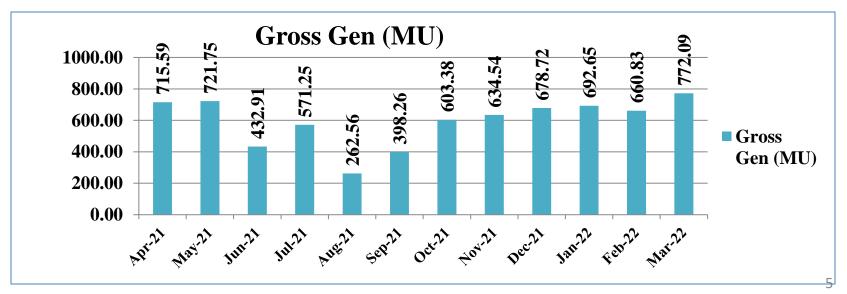
>RRVUNL has been entrusted with the job of development of power projects under state sector, in the state along with operation & maintenance of state owned power stations.

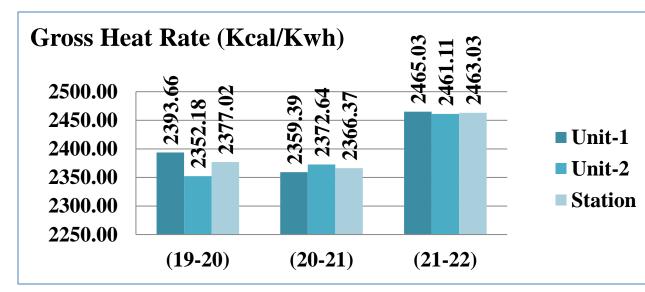
▶ Present Installed Capacity of RRVUNL is 8597.35 MW and 271 MW (ISP).

RRVUNL is also managing and operating the following Inter State Projects (ISP)

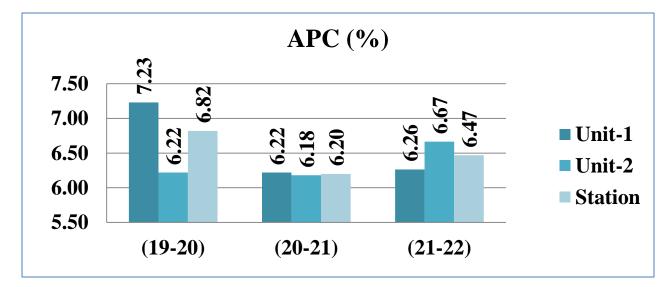
S.No	Power Station	Present Capacity
01.	Rana Pratap Sagar Hydel PS (4X43 MW)	172 MW
02.	Jawahar Sagar Hydel PS (3X33 MW)	99 MW
	Total	271 MW

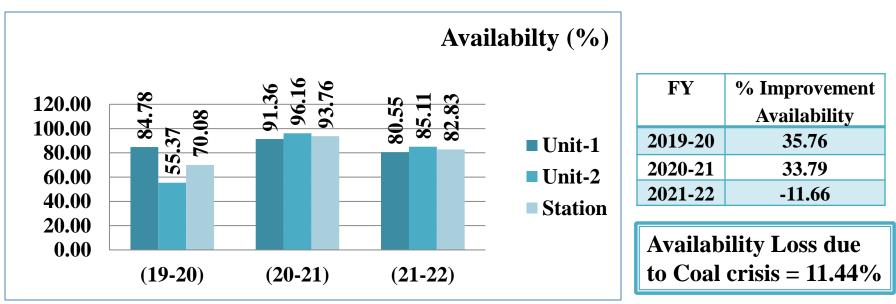

PRESENTLY INSTALLED CAPACITY

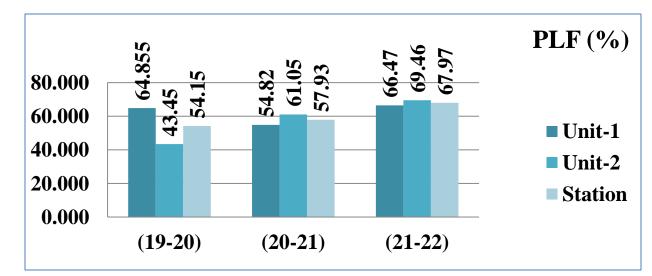

S.No.	Power Station	Present Capacity
1.	Suratgarh STPS, Suratgarh, Distt-Shriganganagar	1500 MW
2.	Suratgarh - SC, Suratgarh, Distt-Shriganganagar	1320 MW
3.	<u>Kota STPS, Kota</u>	1240 MW
4.	<u>CTPP – O&M, Chhabra, Distt. Baran</u>	1000 MW
5.	<u>CTPP – SC, Chhabra, Distt. Baran</u>	1320 MW
6.	Kalisindh Thermal Power Station, Kalisindh, Distt.	1200 MW
0.	<u>Jhalawar</u>	1200 101 00
7.	Dholpur CCPS, Dholpur	330 MW
8.	Giral Lignite TPS, Giral, Distt. Barmer	250 MW
9.	Ramgarh Gas Thermal Power Station, Distt. Jaisalmer	273.50 MW
10.	Mahi Hydel Power Station.Distt-Banswara	140 MW
11.	Mini Micro Hydel Schemes	23.85MW
	Total	8597.35 MW


ENERGY CONSUMPTION OVERVIEW Performance Parameters for FY 2021-22

S. No.	Parameters	Unit	Value
1.	Annual Generation	MU	7144.53
2.	PLF	%	67.97
3.	Availability	%	82.83
4.	Gross Heat rate	KCal/KWh	2463.03
5.	Aux. Consumption	%	6.47
6.	Boiler Efficiencies (station wise)	%	86.48
7.	Turbine Heat Rates (station wise)	KCal/KWh	2277.10
8.	DM Water Consumption	M ³	175024.62 (0.76 %)
9.	Raw Water Consumption	M ³	16344122 (2.597 m ³ /MW)
10.	Sp. Oil Consumption	(ml/KWh)	0.821


ENERGY CONSUMPTION OVERVIEW Performance Parameters for FY 2021-22





FY	% Improvement
	SHR
2019-20	-1.265
2020-21	-0.448
2021-22	4.08

FY	% Improvement		
	APC		
2019-20	2.711		
2020-21	-9.09		
2021-22	4.34		

FY	% Improvement
	PLF
2019-20	2.56
2020-21	6.98
2021-22	17.32

Reasons of Variations

≻Loss of SHR @2.8% due to backing down by LD (35.82% of operated hrs). 5178.67 hrs. (BD) / 14459.35 hrs (Operated). APC @0.5 also increased. ≻Unit boxed up and later run on partial load due to coal shortage and later on received coal was of very poor quality, muddy, lumpy and sticky containing high moisture up to 22.89 % and GCV up to 3312 Kcal/Kg; which further causes increase in SHR as well as APC. >Due to worst coal, frequent tripping of mills causes tripping of Units; oil consumption (1555.8 KL) increased; hence SHR Increased.

MUDDY, LUMPY, STICKY COAL

MUDDY, LUMPY, STICKY COAL

Reasons of Variations

>Unit # 2 was continuous running since 14.10.2019, Annual shutdown was not permitted for maintenance of equipments.

➢Annual over hauling work done during forced shut down of the Unit # 2 from 08.04.2022 to 13.06.2022.

➢Draft Power of Unit # 2 improved from 28.5 KWH/MW to 20.4 KWH/MW. Saving in APC = 1.069 LU per day.

➢After annual overhauling work of Unit # 2 CEPs approx. saving in APC for both CEP 0.08 LU per day.

➤Cooling Tower effectiveness achieved 74.83% against design value 71.4%.

>PHE performance also improved (7.3°C against 7.0°C).

BENCHMARKING

Internal Benchmarking (FY 2020-21)

KaTPP	APC - Unit # 1	APC - Unit # 2	Station
FY 2019-20	7.23 %	6.22 %	6.82 %
FY 2020-21	6.22 %	6.18 %	6.20 %

National Benchmarking (FY 2020-21)

Name	Capacity	SHR	APC (%)
		(KCal/KWh)	
KaTPP	1200 MW (2X600)	2366.37	6.20%
METTUR THERMAL POWER	600 MW	2441.04	7.19%
STATION - II	(1X600MW)		
SIMHADRI SUPER THERMAL	2000 MW	2409	6.68 %
POWER STATION- NTPC	(4X500)		
NTPC Limited –	2600MW	2351	6.72%
RAMAGUNDAM SUPER	(3X200 + 3X500 +		
THERMAL POWER STATION	1X500) + 10 MW Solar		
JSW Energy, Vijayanagar (1690	(1690 MW)	2410	8.16%
MW) & CPP (O&M for JSWSL)]	[2X130MW + 2X300]		
	MW IPP + 830 MW]		

ENCON PROJECTS FY 2022-23

S. No.	Project Detail	Investment (Rupees)	Verified Savings (Rs.)	Verified savings (KWh)	Units	Fuel	Status	Pay back year
1	Replacement of conventional ceiling fan (65W) by Energy efficient BLDC fan (28W)	346920	94345.93	18907	-	-	Complet ed	3.68
2	Variable Frequency Drives in CEPs	50000000	16367200.00	3280000	-	-	Under progress	3.06
3	Cost Economics by Insulating steam pipes & Boiler	54500000	2540982.85	509215	MT	295.84	Under progress	13.70
4	Polymer Coating in CW Pumps	2400000	15528011.74	3111826	-	-	Under progress	0.15
5	Reduction in Reheater Spray	10000000	0.00	0.00	MT	8790.0	Under progress	0.23
6	Reduction in leakages in APH & Flue Gas Ducts	3000000	40853134.99	8187001	-	-	Under progress	0.07
7	Variable Frequency Drives in HFO Pumps	3000000	168143.04	33696	-	-	Under progress	17.84
8	Energy Savers for Split AC	125000	124750.00	25000	-	-	Under progress	1.00
	Total	12,33,71,920	7,56,76,569	1,51,65,645		9085.8		

ROAD MAP FOR FUTURE TARGET

Focus on timely completion of EnCon projects planned for FY 22-23. Saving through 50 Nos. Microwave Switches installation in Office buildings. (Investment = INR 26550.00/-; Saving = INR 95808.00 /-) **Focus on solar power also in coordination with** our Head Office. **FGD** installation is under process in phased manner.

Freedom from OEM dependency.


ENCON PROJECTS IMPLEMENTED

Year	No of Energy saving projects implemented	Investments (INR Million)	Electrical savings (Million KWh)	Thermal savings (Million Kcal)/MTOE)	Savings (INR Million)
FY(2019-20)	2	3.3142	1.1015	63.13	5.1234
FY(2020-21)	10	3.1698	0.7539	-	3.581
FY(2021-22)	6	6.1002	1.7788	110.51	10.5405

ENCON PROJECTS FY 2021-22

S. No.	Project Detail	Investment (Rupees)	Verified Savings (Rs.)	Verified energy savings (KWh)
1	Replacement of HPSV 150W lamps of street lights in various areas by LED 40W	4,42,411.20	7,19,050.77	1,44,098.40
2	Solar Switches installed for street lights in various areas of Plant	43,200	49868.56	9993.70
3	Cost economics to reduce the power cons. by pump coating of CW water pump. (1 No)	5,35,454	41,40,001.40	8,29,659.60
4	Cost economics by insulating steam pipes & boiler .	51,92,598	21,63,575.58	4,33,582.28
5	Isolation of OHE Lines through Isolator in CHP area	0	16,19,411.39	3,24,531.34
6	Replaced Chain Link assembly of AF#1 & AF#2 with new modified Chain Links without welding attachments.	0	2,49,358.48	49,971.64
	Total	62,13,663.20	89,41,266.18	17,91,836.91

INNOVATIVE PROJECT Modification in OHE lines installed at Railway marshalling yard

Problem:- Delay in deployment of man power for coal sampling due to risk of OHE lines. Unloaded Racks:- 1130 Nos. Effect:- Delay in unloading of racks.
 Modification:- OHE Lines isolated by disconnecting Isolator.

Cost of Modification:- NIL

≻Annual Saving:- 324531.34 KWh; 16.19 Lacs Rs.

Replication Potential :- Can be explored by other plants also if they are also facing such type of problems.

INNOVATIVE PROJECT Modification of discharge chute of Stacker cum Reclaimer

Problem:- At the time of reclaiming possibility of feeding foreign material / iron scrap from the yard with coal. **Effect:-** foreign material / iron scrap damages the conveyor belt. ► Modification:- Erection of grill sized 250 X 250 sq. mm in the discharge chute .

Cost of Modification:- Rs. 50,000 /-

► Annual Saving:- 10.0 Lacs Rs.

> Replication Potential :- Can be explored by other plants also if they are also facing such type of problems.

RENEWABLE ENERGY SOURCES

- Renewable Energy Sources are looked after by our State Entity i.e. Rajasthan Renewable Energy Corporation (RREC), Jaipur. They take care of all renewable energy projects in the State.
- Now Solar power under Renewable Energy Sector is being dealt by RRVUNL Head office for all power plants of RRVUNL. RRVUNL got approval of establishing a Solar park of 2000 MW. Recently RRVUNL got approval of establishing a Solar park of 1310 MW out of 2000 MW in Ph1; Land acquisition for this is under progress.
- Hence no any project regarding Renewable Energy is being dealt by KaTPP, Jhalawar.

ENVIRONMENT MANAGEMENT - ASH UTILIZATION

Particulars	UOM	2019-20	2020-21	2021-22
Ash Stock in Plant (yard + pond)	Tons	889951	54444.48	606932
Ash Generated	Tons	1014713	1113162.21	1406911.90
Ash Utilization	%	118.38	103.23	101.62
Ash Utilized in manufacturing of cement/concrete – other similar products	%	62.84	74.41	53.02
Ash Utilized in Fly Ash Bricks	%	8	19.1	8.11
Ash Utilized in Mine filling	%	NIL	NIL	NIL
Ash Utilized for Roads pavements	%	21.27	144.7	24.34
Ash Utilization in Other Areas –	%			
1. In Ash Dyke raising	%	0.28	0.42	0
2. In reclamation of low lying area	%	0.13	0.13	8.04
3. Others(lifted/utilized by Red Bricks manufactures/potters from Ash Dyke)	%	32.39	25.71	8.11
Expenditure on Ash Utilization (annual)	INR(Lakhs)	Nil	Nil	Nil

Ash Handling done through various Methods

Ash Handled (Wet Method)	%	17.07
Ash Handled (Dry Method)	%	74.89
Ash Handled (Semi Wet)	%	8.04

ENVIRONMENT MANAGEMENT- EMISSION

Particulars	UOM	2019-20	2020-21	2021-22
Total CO2 Emissions Per KW of Generation	Ton/KW	NA	NA	0.967 Kg/KWh
Current SOx Emissions at Full Load* (U#1/U#2)	mg/Nm ³	769 / 1110	1081 / 1206	838 / 771
Current NOx Emissions at Full Load* (U#1/U#2)	mg/Nm ³	74 / 149	113 / 191	86 / 150
Particulate Matter * (U#1/U#2)	mg/Nm ³	63 / 24	57 / 62	51 / 54
Mercury*	Mg/Nm ³	NA	NA	NA

Infrastructure available at KaTPP for Emission Measurement and Control

- Continuous Emission Monitoring System
- > Ambient Air Quality Monitoring System

Future Plan for achieving Target:-

FGD installation is planned to control SO_X emission. NOA for EPC Package has been placed on 18.05.2022 to M/s Techno-Electric & Engg Co. Ltd. Kolkata.

Best Practices Adopted for Emission Control and Monitoring: For control of NO_x emission OFA is installed and for SPM ESP are installed. Also, monitoring of air is being done for optimized air-fuel ratio.

ENVIRONMENT MANAGEMENT-WATER

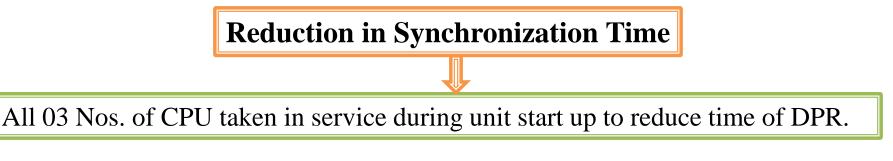
Particulars	UOM	Normative Value by MOEF	2019-20	2020-21	2021-22
DM water Consumption of Plant	%	1	0.84	0.81	0.80
Raw Water Consumption of Plant	m³/MW	3.5	2.64	2.73	2.60

Best Practices in Water Management

Recycle waste of Dual media filter, Ultra Filtration, Rapid Gravity Filter backwash & Cooling Tower Blow down through Effluent Treatment Plant.
Metering and measuring of water through flow meters at different locations.

≻Treated waste water is used for Cooling Tower Make-Up.

➢For treatment of waste water Effluent Treatment Plant (ETP) is installed of capacity 4033 KLD. Complete effluent is being recycled and Zero Liquid Discharge concept is maintained. Treated waste water of ETP clarifier is also used for gardening.


Treated waste water after passing through Reverse Osmosis is used for production of De-Mineralised (DM) Water.

Reduction in APC

Only one CEP kept in service during synchronization in place of both CEPs.
One TDBFP taken in service during cold and warm start up of units in place of MDBFP if one unit is already running.

≻Practice of 2 CWP & 3 ACWP instead of 3 CWP & 4 ACW Pump (as per design) is adopted in winter & rainy seasons.

≻Only two compressors (1-SAC & 1-IAC) kept in service in place of 4-nos.

Reduce Oil Consumption

Increased tipping angle of Wagon Tippler (WT) to reduce residual coal in wagons.
Installed pre-wetting system at Inhaul of each Wagon Tippler.

>Declamping of WT is interlocked with the angle of turn table instead of timer to ensure declamping occurs at the desired position only.

> The cam gear switch has been shifted to the End ring of the tippler from Gear box output to avoid misalignment of turn table and ensure more availability of WT.

≻Increased speed of Stacker from to 5 Mtrs/Min to 10 Mtrs/Min.

≻Installation of Water Spray system during stacking of coal to suppress coal dust.

Mill Area Achieved maximum running hours of coal mills against guaranteed life by optimizing mill loading pressure and proper maintenance of Coal Mills.

Sr. No.	Name of Mill	Running Hours	Manufacturer Guarantee Life in Hours	Grinding media manufacturer
1	Coal Mil- 1A	20960	15000	AIA, Ahmadabad
2	Coal Mil- 1C	12748	6000	BPEG, China
3	Coal Mil- 1D	29988	15000	AIA, Ahmadabad
4	Coal Mil- 1E	25561	15000	AIA, Ahmadabad
5	Coal Mil- 1F	22795	15000	AIA, Ahmadabad
6	Coal Mil- 1G	20816	15000	AIA, Ahmadabad
7	Coal Mil- 1H	13695	6000	BPEG, China
8	Coal Mil- 2B	20737	15000	AIA, Ahmadabad
9	Coal Mil- 2E	20762	15000	AIA, Ahmadabad
10	Coal Mil- 2F	19919	15000	AIA, Ahmadabad
11	Coal Mil- 2G	17810	15000	AIA, Ahmadabad
12	Coal Mil- 2H	8140	6000	BPEG, China

Hazardous waste Management

Chemical sludge from waste waterUsed/spent oil.

CTDF Udaipur membership for disposal of chemical sludge.
 Chemical sludge generated in the previous financial year = 40 MT.
 Spent/Used oil generated in the previous financial year = 44.16 KL and transformer used oil = 1.4 KL.

Freedom from OEM Dependency (FY 22-23) and saving in maintenance cost.

CEPs

≻Attended the leakages of diffuser casing and taper casings in all 3 CEP pumps (U#2) without any OEM (M/s KSB China) support.

Expenditure for above work = INR 2,33,000/- against 97,91,800/- through OEM.

CV-3

≻Developed spindle outer threads, coupling internal thread and partial modification in locking pin of HP Turbine control valve CV-3.

Expenditure INR 1,65,000/- against INR 35,00,000 /- through OEM.
MSV-1 (Unit#1)

≻Leakage of MSV-1 attended within 56Hrs without help of OEM (M/s DEC China).

Expenditure INR 25,000/- against INR 10-12 Lacs through OEM in 7-8 days.

TEAM WORK, EMPLOYEE INVOLVEMENT & MONITORING

Daily Monitoring of plant performance and problems along with solution is done through daily morning meeting.

Review Meeting is Chaired by Plant Head (Chief Engineer)

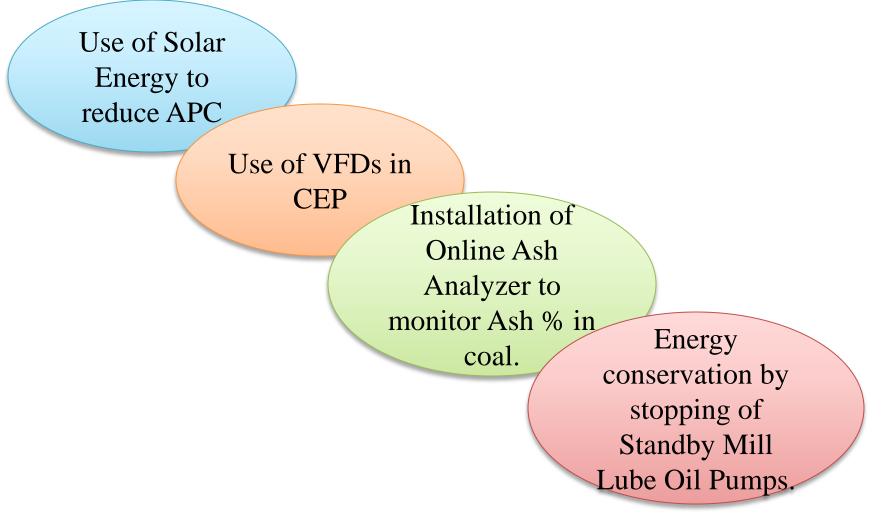
Budget Allotted for Energy Conservation FY (22-23) (Million Rs.):- 123.37.

Training:- Managing and facilitating changes in Coal based Power Plants

Supervisor Level:- Inclined portion of TTR is modified by providing extra roller frames and structures to resolve problem of runaway of TTR (Travelling tripper). **Expenditure** :- Rs. 50,000 /-

Workmen Level:- Pre wetting system has been installed to sprays the water on the coal wagon before tippling for reducing the coal spillage. Expenditure :- Rs. 1,00,000/-

Areas of Concern:- Boiler tube Leakage, Generator Vibration


Kaizen

IMPLEMENTATION OF ISO

% Investment of Energy Saving Projects on Total Turnover of The Company (FY 21-22) – 0.02

LEARNING FROM CII AWARDS 2021 & OTHER PROGRAMS

AWARDS & ACHIEVEMENTS

Team Members Contact Details

Mr. K. L. Meena, Chief Engineer; Email: ce.katpp@rrvun.com
Mr. G.R.Meena, Superintending Engineer; Email: se.coml.katpp@rrvun.com
Ms. Reeta, Assistant Engineer; Email: reeta_48424@rvun.in